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We were discussing @ (“for all. . . ”) and D (“there exists. . . ”).



The importance of quantifiers

It’s important that you get used to this notation. This is not
because there is anything amazing about it, but because
mathematics involves lots of general rules and particular examples:
much of the mathematics you do for the next few years will require
you to be able to deal with these things.
One thing you’ll have to get used to is situations with two or three
quantifiers. These happen very frequently: “in general, there is
always a particular example of such-and-such”, or “there is a
particular amazing example which has the general property of
such-and-such”.
For example, the statement

@n P N, Dx P R s.t. x2 “ n

says that every natural number n has a square root x .
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The order of quantifiers

Remark
The order of quantifiers is very important. If we swap over the two
quantifiers in the last example, we get

Dx P R s.t. @n P N, x2 “ n.

This says that there’s a particular number x which has the
property that x is the square root of every natural number. And
that’s nonsense.
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Negation and quantifiers

Another thing that mathematicians have to do every day is
understanding how negation interacts with quantifiers.
The negation of “all Teletubbies are red”is “not all Teletubbies are
red”, which is equivalent to “there exists a Teletubby which is not
red”.
Similarly, the negation of “there exists a dolphin who likes
Beethoven”is “there does not exist a dolphin who likes
Beethoven”,and that’s equivalent to “all dolphins do not like
Beethoven”.
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Negation and Quantifiers II

In symbols,

 p@x P X , Ppxqq is equivalent to Dx P X s.t.  Ppxq.

 pDx P X s.t. Ppxqq is equivalent to @x P X ,  Ppxq.

Perhaps you may want to remember that “negation swaps @ and
D.” But being able to do it correctly by remembering what’s going
on is much more important than remembering a slogan. After a
while it should come to seem natural.
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Proofs and counterexamples

Suppose I am wondering whether all fish are slippery. If it’s true, I
need to find some general reason why every single fish is slippery.
If it’s false, I only need to find one single fish which isn’t slippery,
and then I’ve proved it.
In general, if you have a general statement and you don’t know if
whether it’s true or false, then it could either be:

§ true, in which case you need to prove it in general (that’s a
statement with a “@” in);

§ false, in which case you need to find a counterexample (that’s
a statement with a “D” in).
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The beginnings of induction

The most obvious interesting thing about the natural numbers is
that it’s natural to start listing them, one after the other:

N “ t0, 1, 2, 3, 4, . . .u .

This, of course, is how counting works.
It turns out that this way of thinking about the integers gives us a
very powerful tool for proving things one integer at a time: the
principle of mathematical induction, usually known to
mathematicians simply as induction.
Informally, I like to think of the following example:

If I can reach the bottom (rung number zero?) of a
ladder,
and if I’m on any rung I can reach the next rung up,
then I can reach any rung on the ladder.
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Induction proofs unravelled

Why, for example, can I reach the fourth rung? One can imagine a
detailed proof of this, as follows:

§ I can reach rung zero;

§ Because I can reach rung zero, I can reach rung one;

§ Because I can reach rung one, I can reach rung two;

§ Because I can reach rung two, I can reach rung three;

§ Because I can reach rung three, I can reach rung four.

The connection with counting is obvious: our proof visibly counts
up to four.
Writing that out was okay, but you are probably glad I didn’t write
out a proof that we could reach the hundred and seventy-eighth
rung. I suppose that we could do so, writing “and so on” at some
point: but that’s a little vague (what about situations where it
isn’t obvious what “and so on” means)?
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§ Because I can reach rung zero, I can reach rung one;

§ Because I can reach rung one, I can reach rung two;

§ Because I can reach rung two, I can reach rung three;

§ Because I can reach rung three, I can reach rung four.

The connection with counting is obvious: our proof visibly counts
up to four.
Writing that out was okay, but you are probably glad I didn’t write
out a proof that we could reach the hundred and seventy-eighth
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Induction, formally

It’s helpful to have a way which isn’t vague.
So here’s a formal version:

Definition (Induction)

Let Ppnq be a statement that depends on a natural number n.
Then, if

(i) the statement Pp0q is true, and

(ii) for all k P N, if Ppkq is true, then Ppk ` 1q is true,

then the statement Ppnq is true for all n P N.
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The language of induction

Here are some useful words:

Remark
We call part (i) the base case, and part (ii) the induction step.
These words agree quite well with our mental picture of a ladder!
When we are trying to prove the induction step Ppkq ñ Ppk ` 1q
we refer to Ppkq as the induction hypothesis.
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An example

We’ll prove many things by induction in this course, but this is one:

Proposition

For any natural number n, we have the following formula for the
sum of the first n positive integers:

1` 2` ¨ ¨ ¨ ` pn ´ 1q ` n “
npn ` 1q

2
.

Let Ppnq be the statement above for some particular n.
So Pp3q is the statement that says 1` 2` 3 “ 3ˆ 4{2, and Pp10q
is the statement that

1` 2` 3` 4` 5` 6` 7` 8` 9` 10 “ p10ˆ 11q{2.

Notice that Ppnq is not a number, it’s a statement.
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Proof.
We will prove Ppnq, which says that

1` 2` ¨ ¨ ¨ ` pn ´ 1q ` n “
npn ` 1q

2
.

for all n by induction.

?

Remark
You may know other ways of proving that. (I can think of a few.)
But I hope you’re impressed with this as a strong potential method
for proving identities.
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