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The right definition

So we need to find some way of saying that it has to make its
mind up eventually. The obvious thing to do is to say is that (for
any ε ą 0) it has to get within ε of x , and then stay within ε of x
forever.
This leads us to our final definition:

Definition
Let x be a real number. A sequence of real numbers a0, a1, a2, . . .
is said to converge to x if we have

@ε ą 0, DN P N s.t. @n ą N, |an ´ x | ă ε.

So that says “no matter what positive real ε our evil opponent
gives us, we can point out some N, such that all the terms
aN`1, aN`2, aN`3, . . . are all within ε of x”.
That does an excellent job of making precise the concept of “gets
close and stays close forever”, and it’s the right definition!
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Some examples 1

Now, suppose we ask whether the sequence

3, 3.1, 3.14, 3.141, 3.1415, . . .

converges to π. It does, because no matter what ε our evil
opponent asks about, we can find some term of the sequence
beyond which all terms are within ε of π. For example, all terms
after the pN ` 1qst term are within 10´N of π.
Does that converge to 1000? No, it never comes within 1 of 1000
(for example), so it certainly doesn’t stay within 1 of 1000 forever.
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Some examples 2

What about the sequence

a0 “ 1.1, a1 “ 2.01, a2 “ 1.001, a3 “ 2.0001, . . .?

Does that converge to anything?
No, it doesn’t. In particular, it doesn’t converge to 1, because
while it’s sometimes close to 1, it’s also sometimes close to 2. So
there is no N where an is always within 0.1 of 1 for all n ą N: all
the odd-numbered an aren’t in that range.
Similarly, it doesn’t converge to 2, because while it’s sometimes
close to 2, it’s sometimes close to 1. So there is no N where an is
always within 0.1 of 2 for all n ą N: all the even-numbered an
aren’t in that range.
So, given the difficulties we’ve had in finding the right definition,
perhaps you’ll have some sympathy for the fact that it took about
two centuries to sort real analysis out properly. In what remains of
the course I’ll try to make you like this definition.
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The Triangle Inequality

Let’s take a brief detour to remind you of something that you
probably know, but whose importance may not have been pointed
out to you. The triangle inequality says that

|x | ` |y | ě |x ` y |

for any real numbers x and y . It’s easy to prove, by carefully
analysing what can happen: which combinations of signs of x , y
and x ` y are possible?
We can use this to get the following:

|z ´ y | ` |y ´ x | ě |pz ´ yq ` py ´ xq| “ |z ´ x |.

This embodies the following slogan:

The distance from x to z if we go direct is less than if
we go via y .
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Convergent sequences

Now we get back to the subject of convergence.
We say that a sequence pai qiPN “ a0, a1, . . . is convergent if it
converges to some x .
Here’s a very important fact (which is only true because of all that
work we put in finding a good definition):

Proposition

A sequence a0, a1, . . . cannot converge to two different real
numbers x and y .

Proof.

?
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Comments

Remark
As a result, if a sequence is convergent, there is a unique real
number to which it converges; we call that the limit of the
sequence.

Let’s now try proving that some sequence or other does converge,
as we’re not well practiced at that yet:

Proposition

The sequence

0, 1{2, 2{3, 3{4, 4{5, . . .

where an “
n´1
n , converges to 1.

Rough version.

?
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A better proof

That proof is sort-of-okay, but it’s backwards. It was helpful to
write it, but hard to check that it’s logically valid. I’ll now rewrite
it forwards.

Neat version.
We must show that, for every ε ą 0, there is some N such that for
all n ą N we have

ˇ

ˇ

ˇ

ˇ

n ´ 1

n
´ 1

ˇ

ˇ

ˇ

ˇ

ă ε.

Let such an ε be given.
Define N to be

P

1
ε

T

, which is the smallest integer greater than 1{ε.
Then, if n ą N, we have

ˇ

ˇ

ˇ

ˇ

n ´ 1

n
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

pn ´ 1q ´ n

n

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

´1

n

ˇ

ˇ

ˇ

ˇ

“
1

n
ă

1

N
ă

1

1{ε
“ ε,

exactly as required.
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A comment

That second version is obviously correct, and all the reasoning goes
in the right direction. But analysis proofs often have the property
that the best proof seems a bit mysterious. It’s best to do the
rough work and then rewrite it neatly.
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. . . and a warning

I understand you will have covered the subject of convergence in
MAS110.
That course is about streetfighting, and you’re encouraged to use
any technique you have to hand.
This is a course about fundamental techniques in mathematics and
their proofs: if I set problems about convergence in MAS114, I
need you to give a rigorous proof, only the definition of
convergence (unless you’re told otherwise), rather than using the
slightly vaguer methods and extra theorems you saw there!
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