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Negation and quantifiers

Another thing that mathematicians have to do every day is
understanding how negation interacts with quantifiers.
The negation of “all Teletubbies are red”is “not all Teletubbies are
red”, which is equivalent to “there exists a Teletubby which is not
red”.
Similarly, the negation of “there exists a dolphin who likes
Beethoven”is “there does not exist a dolphin who likes
Beethoven”,and that’s equivalent to “all dolphins do not like
Beethoven”.
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Negation and Quantifiers II

In symbols,

 p@x P X , Ppxqq is equivalent to Dx P X s.t.  Ppxq.

 pDx P X s.t. Ppxqq is equivalent to @x P X ,  Ppxq.

Perhaps you may want to remember that “negation swaps @ and D.”
But being able to do it correctly by remembering what’s going on is
much more important than remembering a slogan. After a while it
should come to seem natural.
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Proofs and counterexamples

Suppose I am wondering whether all fish are slippery. If it’s true, I
need to find some general reason why every single fish is slippery.
If it’s false, I only need to find one single fish which isn’t slippery,
and then I’ve proved it.
In general, if you have a general statement and you don’t know if
whether it’s true or false, then it could either be:

§ true, in which case you need to prove it in general (that’s a
statement with a “@” in);

§ false, in which case you need to find a counterexample (that’s
a statement with a “D” in).
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The beginnings of induction

The most obvious interesting thing about the natural numbers is
that it’s natural to start listing them, one after the other:

N “ t0, 1, 2, 3, 4, . . .u .

This, of course, is how counting works.
It turns out that this way of thinking about the integers gives us a
very powerful tool for proving things one integer at a time: the
principle of mathematical induction, usually known to
mathematicians simply as induction.
Informally, I like to think of the following example:

If I can reach the bottom (rung number zero?) of a ladder,
and if I’m on any rung I can reach the next rung up,
then I can reach any rung on the ladder.
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Induction proofs unravelled

Why, for example, can I reach the fourth rung? One can imagine a
detailed proof of this, as follows:

§ I can reach rung zero;
§ Because I can reach rung zero, I can reach rung one;
§ Because I can reach rung one, I can reach rung two;
§ Because I can reach rung two, I can reach rung three;
§ Because I can reach rung three, I can reach rung four.

The connection with counting is obvious: our proof visibly counts
up to four.
Writing that out was okay, but you are probably glad I didn’t write
out a proof that we could reach the hundred and seventy-eighth
rung. I suppose that we could do so, writing “and so on” at some
point: but that’s a little vague (what about situations where it isn’t
obvious what “and so on” means)?
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Induction, formally

It’s helpful to have a way which isn’t vague.
So here’s a formal version:

Definition (Induction)
Let Ppnq be a statement that depends on a natural number n.
Then, if

(i) the statement Pp0q is true, and

(ii) for all k P N, if Ppkq is true, then Ppk ` 1q is true,

then the statement Ppnq is true for all n P N.
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The language of induction

Here are some useful words:

Remark
We call part (i) the base case, and part (ii) the induction step.
These words agree quite well with our mental picture of a ladder!
When we are trying to prove the induction step Ppkq ñ Ppk ` 1q
we refer to Ppkq as the induction hypothesis.
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An example

We’ll prove many things by induction in this course, but this is one:

Proposition
For any natural number n, we have the following formula for the
sum of the first n positive integers:

1` 2` ¨ ¨ ¨ ` pn ´ 1q ` n “
npn ` 1q

2
.

Let Ppnq be the statement above for some particular n.
So Pp3q is the statement that says 1` 2` 3 “ 3ˆ 4{2, and Pp10q
is the statement that

1` 2` 3` 4` 5` 6` 7` 8` 9` 10 “ p10ˆ 11q{2.

Notice that Ppnq is not a number, it’s a statement.
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Proof.
We will prove Ppnq, which says that

1` 2` ¨ ¨ ¨ ` pn ´ 1q ` n “
npn ` 1q

2

for all n by induction.
For our base case, Pp0q says that the sum of no integers at all is
0ˆ 1{2, which is true, as the sum of no integers is zero.
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k . Suppose Ppkq is true: we need to show that Ppk ` 1q is true.
The statement Ppkq tells us that
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Now note that

1` 2` ¨ ¨ ¨ ` pk ´ 1q ` k ` pk ` 1q

“ p1` 2` ¨ ¨ ¨ ` pk ´ 1q ` kq ` pk ` 1q

“
kpk`1q

2 ` pk ` 1q (by the induction hypothesis)

“
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“
pk`1qpk`2q

2 .

This is exactly the statement Ppk ` 1q, which is what we needed
for the induction step, and that completes the proof. �
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I hope you’re impressed with this as a strong potential method for
proving identities.
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Nonexamples of induction

Let’s now try proving some completely false statements using
induction. The plan is (of course) not to succeed, but to
understand where we need to be careful.

Example
We’ll try proving using induction that for all n, we have

n “ n ` 83.

Clearly this statement is complete and utter rubbish.

If you believe that induction is a reliable method of proof (and I
do, and I hope you do too), then it had better be the case that
we’re not using induction correctly.
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The dodgy proof

Anyway, here’s an induction “proof”. Suppose that k “ k ` 83 for
some k . We’ll prove that pk ` 1q “ pk ` 1q ` 83. But we have

k ` 1 “ pk ` 83q ` 1 (by assumption)

“ pk ` 1q ` 83 (by rearrangement).

This completes the proof.
What’s the problem with the argument above?

There’s no base case.

If you don’t have a base case, such as Pp0q, then it’s of no use to
prove that Ppkq ñ Ppk ` 1q for all k . It’s no use to be able to climb
a ladder if the bottom of the ladder is unreachable.
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A more evil example

Here’s another, more subtle example:

Example
We’ll try proving using induction that all horses are the same
colour.

Again, we find ourselves hoping very strongly that there’s a
mistake in the use of induction in what follows. I’ll write it out
and we can see if we can spot it.

In order to do this, we’ll let Ppnq be the statement “Given any n
horses, all of them have the same colour”. We’ll prove Ppnq for all
n by induction: that will give us what we want, because we can
take n to be the number of horses in the world.
We’ll take Pp1q as the base case of the induction. This is the
statement “Given any one horse, all of them have the same
colour”: this is obviously true.
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Evil example, continued

Now we’ll prove the induction step. We will assume that Ppkq is
true (“given any k horses, all of them have the same colour”): our
job is to prove that Ppk ` 1q is true (“given any pk ` 1q horses, all
of them have the same colour”).
So suppose we have pk ` 1q horses. Name two of them Alice and
Zebedee.

ZA

Excluding Alice, there are k horses, which all have the same
colour, by the induction hypothesis. So all the horses except Alice
have the same colour as Zebedee.
Also, excluding Zebedee, there are k horses, which all have the
same colour, again by the induction hypothesis. So all the horses
except Zebedee have the same colour as Alice.
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Evil example, continued further

Hence all the horses except Alice and Zebedee have the same
colour as both Alice and Zebedee, which says that all the horses
have the same colour. That ends the proof.
What’s wrong with this?

The particular case Pp1q ñ Pp2q doesn’t work.

I find this surprisingly subtle.
In fact, it’s a parody of a valid style of argument. If it is the case
that any two things are the same, then we could prove using
exactly this method that they’re all the same. In fact, this is
something you already know, since “all are alike” and “no two
differ” are synonymous phrases.
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A variant of induction

There are other techniques which use the same idea of induction,
but not quite the same formal principle as I’ve written out above.
We can start with a base case which isn’t Pp0q. For example, if

(i) Pp15q is true, and

(ii) Ppkq implies Ppk ` 1q for all k ě 15,

then Ppnq is true for all n ě 15.
Perhaps you want to think of that as saying “if have a door which
leads to the fifteenth rung of a ladder, and you know how to climb
ladders, then you can get to every rung above the fifteenth”.
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Not so new after all

Actually, this is really just ordinary induction in disguise.
Indeed, if we define Qpnq to be Ppn ` 15q, then proving Qpnq for
all n P N by induction is the same as proving Ppnq for all integers
n ě 15.
Perhaps you want to think of that as “ignoring all the bits of the
ladder below the fifteenth rung, imagining the ladder starts outside
your door, and starting counting rungs from there”. Or perhaps
you’re bored of the ladder analogy now.
Actually, you should have been prepared for this variant: my
induction proof that “all horses have the same colour” started with
1, not 0. (Okay, that proof was wrong. But there was nothing wrong
with that bit of the proof: there’s nothing wrong with induction
starting from 1. It was something else that was wrong).
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